Title: | Omega-Generic: Composite Reliability of Multidimensional Measures |
---|---|
Description: | It is a computer tool to estimate the item-sum score's reliability (composite reliability, CR) in multidimensional scales with overlapping items. An item that measures more than one domain construct is called an overlapping item. The estimation is based on factor models allowing unlimited cross-factor loadings such as exploratory structural equation modeling (ESEM) and Bayesian structural equation modeling (BSEM). The factor models include correlated-factor models and bi-factor models. Specifically for bi-factor models, a type of hierarchical factor model, the package estimates the CR hierarchical subscale/hierarchy and CR subscale/scale total. The CR estimator 'Omega-generic' was proposed by Mai, Srivastava, and Krull (2021) <https://whova.com/embedded/subsession/enars_202103/1450751/1452993/>. The current version can only handle continuous data. Yujiao Mai contributes to the algorithms, R programming, and application example. Deo Kumar Srivastava contributes to the algorithms and the application example. Kevin R. Krull contributes to the application example. The package 'OmegaG' was sponsored by American Lebanese Syrian Associated Charities (ALSAC). However, the contents of 'OmegaG' do not necessarily represent the policy of the ALSAC. |
Authors: | Yujiao Mai [cre, aut], Deo Kumar Srivastava [aut], Kevin R. Krull [aut] |
Maintainer: | Yujiao Mai <[email protected]> |
License: | GPL-2 |
Version: | 1.0.1 |
Built: | 2024-10-16 04:00:32 UTC |
Source: | https://github.com/cran/OmegaG |
This function is used to estimate the composite reliability coefficient Omega-generic (Mai, Srivastava, & Krull, 2021), given factor loadings, factor covariance matrix, and covariance matrix of item residuals.
OmegaG( Lambda = NULL, Phi = NULL, Psi = NULL, items.index = NULL, factor.index = NULL, scale.structure = NULL, modeltype = c("correlated-factor", "bi-factor") )
OmegaG( Lambda = NULL, Phi = NULL, Psi = NULL, items.index = NULL, factor.index = NULL, scale.structure = NULL, modeltype = c("correlated-factor", "bi-factor") )
Lambda |
The input factor lading matrix. Each row contains the loadings of one item on factors. Each column includes the loadings of one factor. In the case of bi-factor structure, the first column of loadings is on the global factor. |
Phi |
The input factor covariance matrix. |
Psi |
The input covariance matrix of item residuals. Typically, |
items.index |
The vector indexing the items of which the composite reliability is being estimated. It is an optional argument. If it is specified, the argument |
factor.index |
The vector indexing the factor(s)/construct(s) regarding which the composite reliability is being estimated. It is an optional argument. If it is not specified, the function will estimate the composite reliability regarding each factor/construct. |
scale.structure |
The scale structure in a list or a Boolean matrix form. In a list form, each element is a vector of items (names) of a subscale. If in a boolean form, the element on the i-th row and the j-th column indicates whether the i-th item is within the j-th subscale. If both the argument |
modeltype |
The type of factor structure ( |
The estimated composite reliability coefficient OmegaG.
Yujiao Mai, Deo Kumar Srivastava, and Kevin R Krull
Mai, Y., Srivastava, D.K., & Krull, K.R. (2021). Estimating Composite reliability of Multidimensional Measurement with Overlapping Items. Present at the 2021 Eastern North American Region (ENAR) Spring Virtual Meeting.
#### Example 1: OmegaG(Lambda = PedsQLMFS$ESEM$Lambda, Phi = PedsQLMFS$ESEM$Phi, Psi = PedsQLMFS$ESEM$Psi, modeltype = "correlated-factor", scale.structure = PedsQLMFS$ScaleStructure ) # Model type = correlated-factor # # CR of each subscale: # GeneralFatigue : 0.770 # SleepFatigue : 0.690 # CognitiveFatigue : 0.777 #### Example 2: OmegaG(Lambda = PedsQLMFS$biESEM$Lambda, Phi = PedsQLMFS$biESEM$Phi, Psi = PedsQLMFS$biESEM$Psi, modeltype = "bi-factor", scale.structure = PedsQLMFS$ScaleStructure ) # Model type = bi-factor # # Hierarchy and Hierarchical-subscale CR: # GlobalFatigue : 0.806 # GeneralFatigue : 0.174 # SleepFatigue : 0.361 # CognitiveFatigue : 0.190 # # Scale Total and Subscale CR: # GlobalFatigue + all sepcific factors : 0.926 # GlobalFatigue + GeneralFatigue : 0.859 # GlobalFatigue + SleepFatigue : 0.758 # GlobalFatigue + CognitiveFatigue : 0.839 # Example 3: OmegaG::OmegaG(Lambda = PedsQLMFS$biESEM$Lambda, Phi = PedsQLMFS$biESEM$Phi, Psi = PedsQLMFS$biESEM$Psi, modeltype = "bi-factor", items.index = 1:6,factor.index = 2 ) # Model type = bi-factor # # CR of Items 1 2 3 4 5 6 regarding factor 2: # GeneralFatigue : 0.174 # Example 4: OmegaG::OmegaG(Lambda = PedsQLMFS$ESEM$Lambda, Phi = PedsQLMFS$ESEM$Phi, Psi = PedsQLMFS$ESEM$Psi, modeltype = "correlated-factor", items.index = 7:12,factor.index = 2 ) # Model type = correlated-factor # # CR of Items 7 8 9 10 11 12 regarding factor 2: # SleepFatigue : 0.690
#### Example 1: OmegaG(Lambda = PedsQLMFS$ESEM$Lambda, Phi = PedsQLMFS$ESEM$Phi, Psi = PedsQLMFS$ESEM$Psi, modeltype = "correlated-factor", scale.structure = PedsQLMFS$ScaleStructure ) # Model type = correlated-factor # # CR of each subscale: # GeneralFatigue : 0.770 # SleepFatigue : 0.690 # CognitiveFatigue : 0.777 #### Example 2: OmegaG(Lambda = PedsQLMFS$biESEM$Lambda, Phi = PedsQLMFS$biESEM$Phi, Psi = PedsQLMFS$biESEM$Psi, modeltype = "bi-factor", scale.structure = PedsQLMFS$ScaleStructure ) # Model type = bi-factor # # Hierarchy and Hierarchical-subscale CR: # GlobalFatigue : 0.806 # GeneralFatigue : 0.174 # SleepFatigue : 0.361 # CognitiveFatigue : 0.190 # # Scale Total and Subscale CR: # GlobalFatigue + all sepcific factors : 0.926 # GlobalFatigue + GeneralFatigue : 0.859 # GlobalFatigue + SleepFatigue : 0.758 # GlobalFatigue + CognitiveFatigue : 0.839 # Example 3: OmegaG::OmegaG(Lambda = PedsQLMFS$biESEM$Lambda, Phi = PedsQLMFS$biESEM$Phi, Psi = PedsQLMFS$biESEM$Psi, modeltype = "bi-factor", items.index = 1:6,factor.index = 2 ) # Model type = bi-factor # # CR of Items 1 2 3 4 5 6 regarding factor 2: # GeneralFatigue : 0.174 # Example 4: OmegaG::OmegaG(Lambda = PedsQLMFS$ESEM$Lambda, Phi = PedsQLMFS$ESEM$Phi, Psi = PedsQLMFS$ESEM$Psi, modeltype = "correlated-factor", items.index = 7:12,factor.index = 2 ) # Model type = correlated-factor # # CR of Items 7 8 9 10 11 12 regarding factor 2: # SleepFatigue : 0.690
The data provide the information needed for estimating the CR coefficient Omega-generic of the PedsQL Multidimensional Fatigue Scale (Varni et al., 2002).
The estimated parameter matrices (Lambda
, Phi
, and Psi
) were obtained by fitting factor models with participants' respontses to the PedsQL Multidimensional Fatigue Scale.
Two different factor structures, a three-correlated-factor model and a bi-factor model, were included in the example.
Exploratory structural equation modeling (ESEM; Asparouhov, & Muthen, 2009; Morin, Arens, & Marsh, 2016) was employed to estimate the model.
The sample included 87 young-adult cancer survivors. Sample data were collected by St. Jude LIFE Study (SJCRH., 2007-2021).
Please refer to the publication (Mai, Srivastava, & Krull, 2021) for more information.
PedsQLMFS
PedsQLMFS
PedsQLMFS
: A list including three sub-lists: ScaleStructure
, ESEM
, and biESEM
.
1. PedsQLMFS$ScaleStructure
:
ScaleStructure
is a list used to describe the subscale names and items within each subscale. It contains three vectors: GeneralFatigue
, SleepFatigue
and CognitiveFatigue
.
GeneralFatigue
A vector of item varibale names that are in the subscale "General Fatigue"
SleepFatigue
A vector of item varibale names that are in the subscale "Sleep/rest Fatigue"
CognitiveFatigue
A vector of item varibale names that are in the subscale "Cognitive Fatigue"
2. PedsQLMFS$ESEM
:
ESEM
is a list of parameter matrices of a three-correlated-factor model. It contains three matrices: Lambda
, Phi
, and Psi
.
Lambda
: The factor-loading matrix; A matrix with 18 rows and 3 columns, each row represent one scale item, each column represent one factor.
GeneralFatigue
Factor loadings on the sub-domain construct "Gneral Fatigue"
SleepFatigue
Factor loadings on the sub-domain construct "Sleep/rest Fatigue"
CognitiveFatigue
Factor loadings on the sub-domain construct "Cognitive Fatigue"
Phi
: The factor variance-covariance matrix; A matrix with 3 rows and 3 columns. Each row represent one factor. So does each column.
GlobalFatigue
Factor loadings on the global (general factor) construct "Global Fatigue"
GeneralFatigue
Factor loadings on the specific (group factor) construct "General Fatigue"
SleepFatigue
Factor loadings on the specific (group factor) construct "Sleep/rest Fatigue"
CognitiveFatigue
Factor loadings on the specific (group factor) construct "Cognitive Fatigue"
Psi
: The item-error variane-covariance matrix; A matrix with 18 rows and 18 columns. Each row represent one item. So does each column.
Y1
item GeneralFatigue1 measurement-error variance and covariance with other items
Y2
item GeneralFatigue2 measurement-error variance and covariance with other items
Y3
item GeneralFatigue3 measurement-error variance and covariance with other items
Y4
item GeneralFatigue4 measurement-error variance and covariance with other items
Y5
item GeneralFatigue5 measurement-error variance and covariance with other items
Y6
item GeneralFatigue6 measurement-error variance and covariance with other items
Y7
item SleepFatigue1 measurement-error variance and covariance with other items
Y8
item SleepFatigue2 measurement-error variance and covariance with other items
Y9
item SleepFatigue3 measurement-error variance and covariance with other items
Y10
item SleepFatigue4 measurement-error variance and covariance with other items
Y11
item SleepFatigue5 measurement-error variance and covariance with other items
Y12
item SleepFatigue6 measurement-error variance and covariance with other items
Y13
item CognitiveFatigue1 measurement-error variance and covariance with other items
Y14
item CognitiveFatigue2 measurement-error variance and covariance with other items
Y15
item CognitiveFatigue3 measurement-error variance and covariance with other items
Y16
item CognitiveFatigue4 measurement-error variance and covariance with other items
Y17
item CognitiveFatigue5 measurement-error variance and covariance with other items
Y18
item CognitiveFatigue6 measurement-error variance and covariance with other items
3. PedsQLMFS$biESEM
:
biESEM
is a list of parameter matrices of a bi-factor model. It contains three matrices: Lambda
, Phi
, and Psi
.
Lambda
: The factor-loading matrix; A matrix with 18 rows and 4 columns, each row represent one scale item, each column represent one factor. The first factor is the global factor (also called general factor) of a bi-factor structure .
GlobalFatigue
Factor loadings on the global (general factor) construct "Global Fatigue"
GeneralFatigue
Factor loadings on the specific (group factor) construct "Gneral Fatigue"
SleepFatigue
Factor loadings on the specific (group factor) construct "Sleep/rest Fatigue"
CognitiveFatigue
Factor loadings on the specific (group factor) construct "Cognitive Fatigue"
Phi
: The factor variance-covariance matrix; A matrix with 4 rows and 4 columns, each row represent one factor, each column represent one factor. The first factor is the global factor (also called general factor) of a bi-factor structure .
GlobalFatigue
Factor loadings on the global (general factor) construct "Global Fatigue"
GeneralFatigue
Factor loadings on the specific (group factor) construct "General Fatigue"
SleepFatigue
Factor loadings on the specific (group factor) construct "Sleep/rest Fatigue"
CognitiveFatigue
Factor loadings on the specific (group factor) construct "Cognitive Fatigue"
Psi
: The item-error variane-covariance matrix; A matrix with 18 rows and 18 columns. Each row represent one item. So does each column.
Y1
item GeneralFatigue1 measurement-error variance and covariance with other items
Y2
item GeneralFatigue2 measurement-error variance and covariance with other items
Y3
item GeneralFatigue3 measurement-error variance and covariance with other items
Y4
item GeneralFatigue4 measurement-error variance and covariance with other items
Y5
item GeneralFatigue5 measurement-error variance and covariance with other items
Y6
item GeneralFatigue6 measurement-error variance and covariance with other items
Y7
item SleepFatigue1 measurement-error variance and covariance with other items
Y8
item SleepFatigue2 measurement-error variance and covariance with other items
Y9
item SleepFatigue3 measurement-error variance and covariance with other items
Y10
item SleepFatigue4 measurement-error variance and covariance with other items
Y11
item SleepFatigue5 measurement-error variance and covariance with other items
Y12
item SleepFatigue6 measurement-error variance and covariance with other items
Y13
item CognitiveFatigue1 measurement-error variance and covariance with other items
Y14
item CognitiveFatigue2 measurement-error variance and covariance with other items
Y15
item CognitiveFatigue3 measurement-error variance and covariance with other items
Y16
item CognitiveFatigue4 measurement-error variance and covariance with other items
Y17
item CognitiveFatigue5 measurement-error variance and covariance with other items
Y18
item CognitiveFatigue6 measurement-error variance and covariance with other items
Yujiao Mai, Deo Kumar Srivastava, and Kevin R Krull
Asparouhov, T., & Muthen, B. (2009). Exploratory structural equation modeling. Structural equation modeling: a multidisciplinary journal, 16(3), 397–438.
Mai, Y., Srivastava, D.K., & Krull, K.R. (2021). Estimating Composite reliability of Multidimensional Measurement with Overlapping Items. Present at the 2021 Eastern North American Region (ENAR) Spring Virtual Meeting.
Morin, A. J. S., Arens, A. K., & Marsh, H. W. (2016). A Bifactor Exploratory Structural Equation Modeling Framework for the Identification of Distinct Sources of Construct-Relevant Psychometric Multidimensionality. Structural equation modeling, 23(1), 116–139. doi: 10.1080/10705511.2014.961800
Varni, J. W., Burwinkle, T. M., Katz, E. R., Meeske, K., & Dickinson, P. (2002). The PedsQL in pediatric cancer: Reliability and validity of the Pediatric Quality of Life Inventory Generic Core Scales, Multidimensional Fatigue Scale, and Cancer Module. Cancer, 94(7), 2090.
St. Jude Children's Research Hospital. SJCRH. (2007-2021). St. Jude LIFE Study.
OmegaG::PedsQLMFS$ScaleStructure # $GeneralFatigue # [1] "Y1" "Y2" "Y3" "Y4" "Y5" "Y6" # # $SleepFatigue # [1] "Y7" "Y8" "Y9" "Y10" "Y11" "Y12" # # $CognitiveFatigue # [1] "Y13" "Y14" "Y15" "Y16" "Y17" "Y18" OmegaG::PedsQLMFS$ESEM$Lambda # GeneralFatigue SleepFatigue CognitiveFatigue # Y1 0.582 0.134 -0.093 # Y2 0.640 0.161 0.109 # Y3 0.779 0.180 0.110 # Y4 0.728 0.039 0.097 # Y5 0.283 0.109 0.431 # Y6 0.412 -0.011 0.365 # Y7 0.010 0.597 -0.150 # Y8 0.516 0.009 0.195 # Y9 0.578 0.092 0.057 # Y10 0.010 0.820 -0.108 # Y11 -0.043 0.696 0.119 # Y12 0.024 0.652 0.222 # Y13 0.376 0.123 0.350 # Y14 0.073 0.194 0.639 # Y15 0.052 0.183 0.693 # Y16 -0.026 0.161 0.445 # Y17 0.042 0.025 0.696 # Y18 -0.019 0.175 0.607
OmegaG::PedsQLMFS$ScaleStructure # $GeneralFatigue # [1] "Y1" "Y2" "Y3" "Y4" "Y5" "Y6" # # $SleepFatigue # [1] "Y7" "Y8" "Y9" "Y10" "Y11" "Y12" # # $CognitiveFatigue # [1] "Y13" "Y14" "Y15" "Y16" "Y17" "Y18" OmegaG::PedsQLMFS$ESEM$Lambda # GeneralFatigue SleepFatigue CognitiveFatigue # Y1 0.582 0.134 -0.093 # Y2 0.640 0.161 0.109 # Y3 0.779 0.180 0.110 # Y4 0.728 0.039 0.097 # Y5 0.283 0.109 0.431 # Y6 0.412 -0.011 0.365 # Y7 0.010 0.597 -0.150 # Y8 0.516 0.009 0.195 # Y9 0.578 0.092 0.057 # Y10 0.010 0.820 -0.108 # Y11 -0.043 0.696 0.119 # Y12 0.024 0.652 0.222 # Y13 0.376 0.123 0.350 # Y14 0.073 0.194 0.639 # Y15 0.052 0.183 0.693 # Y16 -0.026 0.161 0.445 # Y17 0.042 0.025 0.696 # Y18 -0.019 0.175 0.607